A LOCAL-GLOBAL PRINCIPLE FOR ISOGENIES BETWEEN ELLIPTIC CURVES OVER NUMBER FIELDS

Samuele Anni

Universiteit Leiden - Université Bordeaux 1

Grenoble, 28th Journées Arithmétiques;
4th July 2013
1 Preliminaries and introduction
- Local-to-global principles
- Local-to-global principle for elliptic curves: TORSION
- Local-to-global principle for elliptic curves: ISOGENIES

2 Exceptional pairs

3 New results

4 Finiteness result
Local-global problems: from knowledge about local structures to knowledge about global structures.
Local-global problems: from knowledge about local structures to knowledge about global structures.

In this context: from p-adic information global information. For example:
Local-global problems: from knowledge about local structures to knowledge about global structures.

In this context: from p-adic information global information. For example:

Local-to-global principles for quadratic forms.
Local-global problems: from knowledge about local structures to knowledge about global structures.

In this context: from p-adic information global information. For example:

Local-to-global principles for quadratic forms.

Theorem of Hasse-Minkowski

Two quadratic forms with coefficients in \mathbb{Q} which are equivalent over \mathbb{Q}_p for all prime numbers p and over \mathbb{R} are equivalent over \mathbb{Q}.
Local-to-global principle for elliptic curves: TORSION

Let ℓ be a prime. Katz in 1981 studied the local-global principle for ℓ-torsion for elliptic curves.

Theorem (Katz)

Let E be an elliptic curve over a number field K. If E has non-trivial ℓ-torsion locally at a set of primes with density one then E is K-isogenous to an elliptic curve which has non-trivial ℓ-torsion over K.

He proved this by reducing the problem to a purely group-theoretic statement.
Local-to-global principle for elliptic curves: TORSION

Let ℓ be a prime. Katz in 1981 studied the local-global principle for ℓ-torsion for elliptic curves.
Local-to-global principle for elliptic curves: TORSION

Let ℓ be a prime. Katz in 1981 studied the local-global principle for ℓ-torsion for elliptic curves.

Theorem (Katz)

Let E be an elliptic curve over a number field K. If E has non-trivial ℓ-torsion locally at a set of primes with density one then E is K-isogenous to an elliptic curve which has non-trivial ℓ-torsion over K.
Local-to-global principle for elliptic curves: TORSION

Let ℓ be a prime. Katz in 1981 studied the local-global principle for ℓ-torsion for elliptic curves.

Theorem (Katz)

Let E be an elliptic curve over a number field K. If E has non-trivial ℓ-torsion locally at a set of primes with density one then E is K-isogenous to an elliptic curve which has non-trivial ℓ-torsion over K.

He proved this by reducing the problem to a purely group-theoretic statement.
Local-to-global principle for elliptic curves: ISOGENIES

Definition

Let E be an elliptic curve defined on a number field K, and let ℓ be a prime number. If \mathfrak{p} is a prime of K where E has good reduction, \mathfrak{p} not dividing ℓ, we say that E admits an ℓ-isogeny **locally** at \mathfrak{p} if the Néron model of E over the ring of integer of $K_\mathfrak{p}$ admits an ℓ-isogeny.
Local-to-global principle for elliptic curves: ISOGENIES

Definition

Let E be an elliptic curve defined on a number field K, and let ℓ be a prime number. If \mathfrak{p} is a prime of K where E has good reduction, \mathfrak{p} not dividing ℓ, we say that E admits an ℓ-isogeny **locally** at \mathfrak{p} if the Néron model of E over the ring of integer of $K_{\mathfrak{p}}$ admits an ℓ-isogeny.

If E admits an ℓ-isogeny over K, then E necessarily admits an ℓ-isogeny locally at every prime of good reduction. The converse statement has been recently studied by Sutherland (arxiv, November 2011).
Question

Let E be an elliptic curve defined over a number field K, and let ℓ be a prime number, if E admits an ℓ-isogeny locally at a set of primes with density one then does E admit an ℓ-isogeny over K?
Question

Let E be an elliptic curve defined over a number field K, and let ℓ be a prime number, if E admits an ℓ-isogeny locally at a set of primes with density one then does E admit an ℓ-isogeny over K?

Theorem (Sutherland)

Let E be an elliptic curve defined over a number field K and let ℓ be a prime number. Assume $\sqrt{\left(\frac{-1}{\ell}\right) \ell \notin K}$, and suppose E/K admits an ℓ-isogeny locally at a set of primes with density one. Then E admits an ℓ-isogeny over a quadratic extension of K. Moreover, if $\ell \equiv 1 \mod 4$ or $\ell < 7$, E admits an ℓ-isogeny defined over K.
1 Preliminaries and introduction

2 Exceptional pairs

3 New results

4 Finiteness result
Definition

Let K be a number field, let E be an elliptic curve over K and ℓ a prime number, a pair $(\ell, j(E))$ is said to be **exceptional** for K if E/K admits an ℓ-isogeny locally everywhere but not over K.
Definition

Let K be a number field, let E be an elliptic curve over K and ℓ a prime number, a pair $(\ell, j(E))$ is said to be exceptional for K if E/K admits an ℓ-isogeny locally everywhere but not over K.

Sutherland proved the following result:
Definition

Let K be a number field, let E be an elliptic curve over K and ℓ a prime number, a pair $(\ell, j(E))$ is said to be exceptional for K if E/K admits an ℓ-isogeny locally everywhere but not over K.

Sutherland proved the following result:

Theorem (Sutherland)

The pair $(7, 2268945/128)$ is the only exceptional pair for \mathbb{Q}.
Theorem (Sutherland)

Let E be an elliptic curve defined over a number field K and let ℓ be a prime number. Assume $\sqrt{\left(\frac{-1}{\ell} \right) \ell} \not\in K$, and suppose E/K admits an ℓ-isogeny locally at a set of primes with density one. Then E admits an ℓ-isogeny over a quadratic extension of K. Moreover, if $\ell \equiv 1 \mod 4$ or $\ell < 7$, E admits an ℓ-isogeny defined over K.
Let E be an elliptic curve defined over a number field K, then on the ℓ-torsion points of $E[\ell](\overline{Q})$ there is a $\text{Gal}(\overline{Q}/K)$-action. Then there exist a Galois representation $\rho_{E,\ell}$:
Let E be an elliptic curve defined over a number field K, then on the ℓ-torsion points of $E[\ell](\overline{\mathbb{Q}})$ there is a $\text{Gal}(\overline{\mathbb{Q}}/K)$-action. Then there exist a Galois representation $\rho_{E,\ell}$:

$$\text{Gal}(\overline{\mathbb{Q}}/K) \xrightarrow{\rho_{E,\ell}} \text{Aut}(E[\ell]) \cong \text{GL}_2(\mathbb{F}_\ell).$$
Let E be an elliptic curve defined over a number field K, then on the ℓ-torsion points of $E[\ell](\overline{\mathbb{Q}})$ there is a $\text{Gal}(\overline{\mathbb{Q}}/K)$-action. Then there exist a Galois representation $\rho_{E,\ell}$:

$$\text{Gal}(\overline{\mathbb{Q}}/K) \xrightarrow{\rho_{E,\ell}} \text{Aut}(E[\ell]) \cong \text{GL}_2(\mathbb{F}_\ell).$$

Remark

Let $(\ell, j(E))$ be an exceptional pair for the number field K and let $G = \rho_{E,\ell}(\text{Gal}(\overline{\mathbb{Q}}/K))$. Then G is a subgroup of $\text{GL}_2(\mathbb{F}_\ell)$ such that $|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0$ for all $g \in G$ but $|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0$.
Given an elliptic curve E, defined over a number field K, the compatibility between $\rho_{E,\ell}$ and the Weil pairing on $E[\ell]$ implies that:

\[
\zeta_{\ell} \text{ is in } K \quad \text{if and only if} \quad G \text{ is contained in } \text{SL}_2(F_{\ell}) \text{ if and only if } H, \text{ the projective image of } G, \text{ is contained in } \text{SL}_2(F_{\ell})/\{\pm 1\} \text{ if and only if } \sqrt{\ell} \text{ belongs to } K.
\]

Remark: The solution to the local-global principle about ℓ-isogenies over K depends on $\sqrt{\ell} \text{ belonging to } K$.

Samuele Anni

A local-global principle for isogenies over number fields
Given an elliptic curve E, defined over a number field K, the compatibility between $\rho_{E,\ell}$ and the Weil pairing on $E[\ell]$ implies that:

$$\zeta_{\ell} \text{ is in } K \iff G \text{ is contained in } SL_2(F_{\ell});$$

$$H, \text{ the projective image of } G, \text{ is contained in } SL_2(F_{\ell})/\{\pm 1\} \iff \sqrt{(-1)_{\ell}} \ell \text{ is in } K.$$

Remark: The solution to the local-global principle about ℓ-isogenies over K depends on $\sqrt{(-1)_{\ell}} \ell$ belonging to K.
Given an elliptic curve E, defined over a number field K, the compatibility between $\rho_{E,\ell}$ and the Weil pairing on $E[\ell]$ implies that:

- ζ_ℓ is in K if and only if G is contained in $SL_2(\mathbb{F}_\ell)$;
Given an elliptic curve E, defined over a number field K, the compatibility between $\rho_{E,\ell}$ and the Weil pairing on $E[\ell]$ implies that:

- ζ_ℓ is in K if and only if G is contained in $\text{SL}_2(\mathbb{F}_\ell)$;
- H, the projective image of G, is contained in $\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\}$ if and only if $\sqrt{(\frac{-1}{\ell})} \ell$ is in K.
Given an elliptic curve E, defined over a number field K, the compatibility between $\rho_{E,\ell}$ and the Weil pairing on $E[\ell]$ implies that:

- ζ_{ℓ} is in K if and only if G is contained in $\text{SL}_2(\mathbb{F}_{\ell})$;
- H, the projective image of G, is contained in $\text{SL}_2(\mathbb{F}_{\ell})/\{\pm 1\}$ if and only if $\sqrt{\left(\frac{-1}{\ell}\right)\ell}$ is in K.

Remark

The solution to the local-global principle about ℓ-isogenies over K depends on $\sqrt{\left(\frac{-1}{\ell}\right)\ell}$ belonging to K.
1 Preliminaries and introduction

2 Exceptional pairs

3 New results
 - First case
 - Second case

4 Finiteness result
Let us assume that $\sqrt{\left(\frac{-1}{\ell}\right)} \ell \notin K$.
Let us assume that $\sqrt{\left(\frac{-1}{\ell}\right)} \notin K$.

Lemma (Sutherland)

Let G be a subgroup of $\text{GL}_2(\mathbb{F}_\ell)$ whose image H in $\text{PGL}_2(\mathbb{F}_\ell)$ is not contained in $\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\}$. Suppose $|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0$ for all $g \in G$ but $|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0$.

Then $\ell \equiv 3 \mod 4$ and the following holds:

1. H is dihedral of order $2n$, where $n > 1$ is an odd divisor of $(\ell - 1)/2$;
2. G is properly contained in the normalizer of a split Cartan subgroup;
3. $\mathbb{P}^1(\mathbb{F}_\ell)/G$ contains an orbit of size 2.
Proposition (A.)

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) with \(\sqrt{(-1/\ell) \ell}\) not belonging to \(K\). Then \(E\) admits an \(\ell\)-isogeny over \(K(\sqrt{-\ell})\) (and actually, two such isogenies).
Main Theorem (A.)

Let $(\ell, j(E))$ be an exceptional pair for the number field K of degree d over \mathbb{Q}, such that $\sqrt{\left(\frac{-1}{\ell}\right)} \ell \notin K$. Then

Remark

This theorem implies the result obtained by Sutherland in the case $K = \mathbb{Q}$.

This theorem is proved studying the Galois representation $\rho_{E,\ell}$.
Main Theorem (A.)

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) of degree \(d\) over \(\mathbb{Q}\), such that \(\sqrt{\left(\frac{-1}{\ell}\right)} \ell \not\in K\). Then \(\ell \equiv 3 \text{ mod } 4\) and

\[7 \leq \ell \leq 6d+1. \]
Main Theorem (A.)

Let $(\ell, j(E))$ be an exceptional pair for the number field K of degree d over \mathbb{Q}, such that $\sqrt{(-1/\ell)} \notin K$. Then $\ell \equiv 3 \mod 4$ and

$$7 \leq \ell \leq 6d+1.$$

Remark

This theorem implies the result obtained by Sutherland in the case $K = \mathbb{Q}$.
Main Theorem (A.)

Let $(\ell, j(E))$ be an exceptional pair for the number field K of degree d over \mathbb{Q}, such that $\sqrt{(-1/\ell)} \not\in K$. Then $\ell \equiv 3 \mod 4$ and

$$7 \leq \ell \leq 6d+1.$$

Remark

This theorem implies the result obtained by Sutherland in the case $K = \mathbb{Q}$.

This theorem is proved studying the Galois representation $\rho_{E,\ell}$.
Let us assume that $\sqrt{\left(\frac{-1}{\ell}\right)} \ell \in K$.

Let us assume that \(\sqrt{\left(\frac{-1}{\ell} \right)} \ell \in K \).

Lemma (A.)

Let \(G \) be a subgroup of \(\text{GL}_2(\mathbb{F}_\ell) \) whose image \(H \) in \(\text{PGL}_2(\mathbb{F}_\ell) \) is contained in \(\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\} \). Suppose \(|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0 \) for all \(g \in G \) but \(|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0 \). Then \(\ell \equiv 1 \mod 4 \) and one of the followings holds:

1. \(H \) is dihedral of order \(2n \), where \(n \in \mathbb{Z}_{>1} \) is a divisor of \(\ell-1 \);
2. \(H \) is isomorphic to one of the following exceptional groups: \(A_4 \), \(S_4 \) or \(A_5 \).
Proposition (A.)

Let E be an elliptic curve defined over a number field K of degree d over \mathbb{Q} and let ℓ be a prime number. Let us suppose $\sqrt{\left(\frac{-1}{\ell}\right)} \ell \in K$. Suppose E/K admits an ℓ-isogeny locally at a set of primes with density one. Then:

1. if $\ell \equiv 3 \mod 4$ the elliptic curve E admits a global ℓ-isogeny over K;
2. if $\ell \equiv 1 \mod 4$ the elliptic curve E admits an ℓ-isogeny over L, finite extension of K, which can ramify only at primes dividing the conductor of E and ℓ.

Moreover, if $\ell \equiv -1 \mod 3$ or if $\ell \geq 60d+1$, then E admits an ℓ-isogeny over a quadratic extension L of K.
Proposition (A.)

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) of degree \(d\) over \(\mathbb{Q}\) and discriminant \(\Delta\). Then

\[\ell \leq \max \{ \Delta, 6d+1 \}. \]
Question

Let K be a number field and let ℓ be a prime number, how many exceptional pairs $\langle \ell, j(E) \rangle$ do exist over K?
Proposition (A.)

Given a number field K:
Proposition (A.)

Given a number field K:

- if $\ell = 2, 3$ then there exists no exceptional pair;
Given a number field K:

- if $\ell = 2, 3$ then there exists no exceptional pair;
- there exist infinitely many exceptional pairs $(5,j(E))$ for the number field K if and only if $\sqrt{5}$ belongs to $K;$
Proposition (A.)

Given a number field K:

- if $\ell = 2, 3$ then there exists no exceptional pair;
- there exist infinitely many exceptional pairs $(5, j(E))$ for the number field K if and only if $\sqrt{5}$ belongs to K;
- if $\ell > 7$, then the number of exceptional pairs $(\ell, j(E))$ is finite.
Sketch of the Proof
Sketch of the Proof

- If $\ell = 2, 3$ then the result follows from the previous combinatorics.
Sketch of the Proof

- If $\ell = 2, 3$ then the result follows from the previous combinatorics.
- For $\ell \geq 5$ the result follows from counting rational points on modular curves.
Sketch of the Proof

- If $\ell = 2, 3$ then the result follows from the previous combinatorics.
- For $\ell \geq 5$ the result follows from counting rational points on modular curves.
Modular curves

Let $\ell \geq 5$ be a prime. The **modular curve** $X(\ell)$ is the compactified fine moduli space which classify, up to isomorphism, pairs (E, α), where E is a generalized elliptic curve over a scheme S over $\text{Spec}(\mathbb{Z}[1/\ell, \zeta_\ell])$ and $\alpha : (\mathbb{Z}/\ell\mathbb{Z})_S^2 \xrightarrow{\sim} E[\ell]$ is an isomorphism of group schemes over S which is a full level ℓ-structure.

A full level ℓ-structure on a generalized elliptic curve E over S is a pair of points (P_1, P_2), satisfying $P_1, P_2 \in E[\ell]$ and $e_\ell(P_1, P_2) = \zeta_\ell$ where e_ℓ is the Weil pairing on $E[\ell]$.
In the case $\ell = 5$ the modular curve considered is

$$X_{V_4}(5) := G \backslash X(5),$$

where $G \subset GL_2(\mathbb{Z}/\ell\mathbb{Z})$ is the inverse image of $V_4 \subset PGL_2(\mathbb{Z}/\ell\mathbb{Z})$.
In the case $\ell = 5$ the modular curve considered is

$$X_{V_4}(5) := G \backslash X(5),$$

where $G \subset GL_2(\mathbb{Z}/\ell\mathbb{Z})$ is the inverse image of $V_4 \subset PGL_2(\mathbb{Z}/\ell\mathbb{Z})$.

Proposition

Over $\text{Spec}(\mathbb{Q}(\sqrt{5}))$ the modular curve $X_{V_4}(5)$ is isomorphic to \mathbb{P}^1.
For $\ell > 7$ the result follows applying Faltings’ Theorem.

In this case, an exceptional pair essentially (we are not considering exceptional subgroups) corresponds to a rational point of

$$X_{\text{split}}(\ell) := G \backslash X(\ell),$$

where G is the normalizer of a split Cartan subgroup of $GL_2(\mathbb{F}_\ell)$. The curve $X_{\text{split}}(\ell)$ parametrizes elliptic curves endowed with a pair of independent cyclic ℓ-isogenies.
The local-global principle for 7-isogenies leads us to a dichotomy between a finite and an infinite number of counterexamples according to the rank of a specific elliptic curve that we call the Elkies-Sutherland curve:

\[
y^2 = x^3 - 1715x + 33614
\]
The local-global principle for 7-isogenies leads us to a dichotomy between a finite and an infinite number of counterexamples according to the rank of a specific elliptic curve that we call the Elkies-Sutherland curve:

Proposition (A.)

If $\ell = 7$ then the number of exceptional pairs $(7, j(E))$ for a number field K, is finite or infinite, depending on the rank of the elliptic curve

$$E' : y^2 = x^3 - 1715x + 33614$$

being respectively 0 or positive.
Examples for 7-isogenies:

For \(\mathbb{Q}(\sqrt{-23}) \) and \(\mathbb{Q}(i) \) there are \textbf{infinitely many} counterexamples to the local-global principle about 7-isogenies.

For any field in the following table there are \textbf{finitely many} counterexamples to the local-global principle about 7-isogenies:

\[
\begin{array}{ccc}
\mathbb{Q}(\sqrt{-14}) & \mathbb{Q}(\sqrt{-119}) & \mathbb{Q}(\sqrt{-210}) \\
\mathbb{Q}(\sqrt{-21}) & \mathbb{Q}(\sqrt{-133}) & \mathbb{Q}(\sqrt{-217}) \\
\mathbb{Q}(\sqrt{-35}) & \mathbb{Q}(\sqrt{-154}) & \mathbb{Q}(\sqrt{-231}) \\
\mathbb{Q}(\sqrt{-42}) & \mathbb{Q}(\sqrt{-161}) & \mathbb{Q}(\sqrt{-238}) \\
\mathbb{Q}(\sqrt{-91}) & \mathbb{Q}(\sqrt{-182}) & \mathbb{Q}(\sqrt{-259}) \\
\mathbb{Q}(\sqrt{-105}) & \mathbb{Q}(\sqrt{-203}) & \mathbb{Q}(\sqrt{-287})
\end{array}
\]
Further Directions

- Generalization for simple abelian varieties of dimension d over \mathbb{Q} which are principally polarized i.e. study of the subgroups of $\mathbb{P} \text{GSp}_{2d}(\mathbb{F}_\ell)$...
- Generalization for abelian varieties of GL$_2$-type;
- Generalization for isogenies of prime power degree;
- Generalization for isogenies of degree given by products of primes;
- ...
“Think Globally, Act Locally”
Patrick Geddes

Thanks!

Samuele Anni