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Abstract 

An algorithm is presented for determining multi dimensional reaction coordinates 

between two known conformers. Only the energy function and its gradient are required. 

The resulting paths follow the adiabatic energy valleys and have energy maxima that are 

true saddle-points, which can be multiple along each path. The method is suitable for the 

study of complex isomerization reactions, including allosteric transitions in proteins and 

more general conformational changes of macromolecules. 
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1. Introduction 

Empirical energy functions are being used increasingly to study macromolecules 

and other systems with a very large number of degrees of freedom [1, 2]. The first step in 

exploring the topology of the high dimensional energy surface of such systems is to 

search for the local minima that correspond to stable molecular conformations [3]. It is 

then necessary to locate the saddle-points that separate these minima and to find the 

adiabatic reaction path connecting them (also known as the minimum energy path), 

which is defined as the set of points connecting a saddle-point to a minimum while 

following the gradient. While there are many efficient algorithms to find local minima, 

even on a surface of high dimensionality [4], the determination of reaction coordinates 

and transition states is still a difficult procedure when the objective is to find a path that 

connects two specific conformers. 

Existing methods for determining such paths fall into two categories. Focal 

methods modify a single conformer until it becomes the saddle-point, of which it is 

assumed that there is only one along the path between the two minima [5, 6, 7, 8, 9]. 

Such methods either make use of the second derivative matrix [5, 6], which limits them 

to low-dimensional problems, or rely on the assumption that the path near the 

saddle-point has some predetermined shape [7, 8, 9], which limits them to simple energy 

surface topologies. By design, these methods cannot find paths with multiple transition 

states. Global methods treat the entire path as a succession of points in conformation 

space [10, 11]. These points are simultaneously minimized, under constraints that keeps 

them from falling into nearby minima, until they reach the adiabatic valley connecting 

the reactant to the product conformers. Such methods do not provide an accurate value 

for the saddle-point, since the surrounding path-points tend to lie as low as possible on 

each side of the saddle-point. Therefore, these methods must be supplemented with one 

of the focal methods to determine each saddle-point. 

While finding the adiabatic path itself is desirable, it can easily be obtained by a 

steepest descent procedure once the saddle-points have been determined [8, 12]. Because 

of the exponential dependence of the reaction rate on the energy barrier along a given 

path, knowing the precise height of the saddle-point is important for distinguishing 

between several conceivable paths. Hence, the saddle-point is the key to the full 
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characterization of a reaction coordinate. The Conjugate Peak Refinement (CPR) 

algorithm introduced here is explicitly optimized for finding a series of true saddle-

points, which are connected to one another through the adiabatic paths that descend from 

them and form a continuous reaction coordinate between a specified reactant and product. 

It is the only available method that will do so reliably for systems with a very large 

number of degrees of freedom and on highly complex energy surfaces. The method 

requires a continuous energy function and its first derivative (e.g., of the type used in 

molecular mechanics simulations), but does not need the second derivatives. The 

minimum input consists of the reactant and product structures, between which a reaction 

path is to be determined. The method can also refine an initial guess for the reaction path, 

such as selected steps along a molecular dynamics trajectory or some other intermediate 

conformations. The resulting output is a string of points in conformation space that 

follows the neighborhood of the adiabatic valleys. Any point that is a local maximum 

along the path will have completely converged to a saddle-point of the energy surface. If 

the reaction path involves multiple transition states, each of them will have its saddle-

point included along the refined path. The final number of path points does not need to be 

specified before starting the refinement, as the procedure adds them as dictated by the 

complexity of the energy surface and by the path curvature. Therefore, the density of 

points along the refined path is not constant and is higher where the path crosses saddle 

regions or where the adiabatic path has a small radius of curvature. 

These properties of simultaneous convergence to multiple saddle-points, 

automatic adaptation of path-resolution to the energy surface topology and robustness in 

high-dimensional systems make the CPR method a useful addition to existing 

approaches. The CPR algorithm has been applied to isomerization reactions in a wide 

range of molecules, including proteins (e.g. the lid-transition in triosephosphate 

isomerase [13]). The method is illustrated by employing it on a two-dimensional potential 

surface. Then the method is applied to the proline ring-puckering reaction in the cyclic 

decapeptide antamanide. 
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2. Method 

The CPR method relies upon Sylvester's inertia theorem [14], which states that for 

any set of basis vectors s
j
 (j = 0, ... , D-1), conjugate with respect to a Hessian matrix H 

(the matrix of the second derivatives of the energy) of dimension D 

(i.e., sT
i Hs

j
 = 0 , ∀ i =\  j ), the number r- of such vectors for which 

sT
i Hs

i
 < 0    (i = 0, ... , r--1)     (1) 

is independent of the choice of the basis-set. Because H is hermitian, its eigenvectors 

form a conjugate basis set. By definition, the Hessian matrix at a true saddle-point, Hs, 

has exactly one negative eigenvalue, so that Hs has r- = 1. This means that in the vicinity 

of a saddle-point, for any set of vectors s
j
 conjugate with respect to H

s
, there will be one 

direction s
0
 along which the energy has a local maximum, 

s
0

sTH
s
s

0
 < 0       (2a) 

and D-1 directions along which the energy has a local minimum, 

s
j

sTH
s
s

j
 > 0    j > 0  .      (2b) 

To converge to a saddle-point from a distance at which the energy can be 

approximated by a quadratic expansion around that saddle-point, 

E(x) ≈ E(xs) +  ½ (x - xs)TH
s
(x - xs)  , 

it is necessary to obtain a set of conjugate vectors, of which s
0
 obeys Eq. (2a), so as to be 

able to maximize the energy along s
0
 and to minimize the energy along the remaining 

directions s
j
 (j > 0). Once a direction along which the energy has a local maximum is 

found, this direction can be taken as s
0
. The rest of the conjugate basis-set is then built 

recursively, making use of a formula by Beale [7, 15], which constructs a set of conjugate 

directions, starting with an arbitrary direction s
0
 : 

s
0
      (given) 

s
1
 = -g1 + 

g1gTh
s0sTh s0 
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s
j
 = -gj + 

gjgTh
s0sTh s0 + 

|gj|2
|gj-1|2

 sj-1      j > 1  , 

where g
j
 is the gradient vector at the energy extremum y

j
 along s

j-1
 and h is an estimate of 

Hs
0
. One cycle of maximizing the energy along s

0
 and minimizing along the successive s

j
 

(j > 0) yields the saddle-point on a quadratic energy surface. Sinclair and Fletcher [7] 

have successfully used this approach to locate single saddle-points on non-quadratic 

surfaces, by taking s
0
 as the vector going from the reactant to the product, s

0
 = (x

P
 - x

R
), 

and iterating through several such maximization/minimization cycles. The fixed choice of 

s
0
 in that focal method limits the application of their algorithm to simple energy surfaces, 

for which H
s
 obeys 

(x
P
-x

R
)TH

s
(x

P
-x

R
) < 0 . 

While the CPR method also makes use of Beale's formula to build conjugate 

directions, it avoids the limitation on H
s
 by adding intermediate path points on each side 

of the saddle, so as to introduce progressively better choices of s
0
. At a given stage of 

refinement, the reaction path is described by a set of n points [x
1
, x

2
, ... , x

n
], each 

corresponding to a molecular conformation with its coordinates represented by a vector 

of dimension  D = 3N  (N = number of atoms); here x
1
 is the reactant conformation, x

n
 is 

the product and x
i
 (i = 2, ... , n-1) are any intermediate conformers along the path. The 

path segments between the points are constructed by interpolating linearly between point 

x
i
 and x

i+1
 (i = 1, ... , n-1). The choice of polarity of the reaction (i.e. whether x

1
 or x

n
 is 

defined as the reactant) is arbitrary and does not affect the results. CPR is an iterative 

procedure, in which a single intermediate point is either added, refined or removed 

during a given cycle, until the only local maxima in energy left along the path are true 

saddle-points. 

We now demonstrate how the CPR procedure works by following the progress of 

a path refinement on the two-dimensional potential described by Müller and Brown [8] 

(Fig. 1); the algorithmic details will be presented elsewhere. The initial guess consists of 

the points corresponding to the reactant r and the product p (Fig. 1A). A coarse set of 
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steps along the line segment from r to p reveals the presence of an energy maximum 

around point y1
0, so that s

0
 is chosen in the first cycle as s

0
 = (p - r). Thorough 

maximization in term of α along the line  r + αs
0
  yields y1

1. A line-minimization is 

carried out from y1
1 along the conjugate vector s

1
, to obtain x

1
. If the refinement were 

continued as a Sinclair-Fletcher saddle-point search, the next cycle would start with a 

maximization along the line  x
1
 + αs

0
, keeping s

0
 unchanged. Because there is no local 

maximum along that line (the only maxima are at infinity), the Sinclair-Fletcher 

algorithm would fail on the Müller-Brown potential. In the CPR method, x
1
 becomes a 

new intermediate along the path, which now has two segments (Fig. 1B). Starting the 

second cycle of refinement, the search for the point of highest energy is performed along 

the whole path [r, x
1
, p]. No local maximum is found between r and x

1
, but there is a 

peak at y2
1, between x

1
 and p, so that s

0
 is now taken as s

0
 = (p - x

1
). A conjugate line-

minimization from y2
1 gives an additional path intermediate x

2
 , which satisfies the 

following two conditions. First, the RMS-gradient of the energy at x
2
 is essentially zero. 

Second, even though x
2
 is the result of D-1 line-minimizations (here D = 2), it is still a 

local energy maximum along the path, so that by construction it satisfies Eqs. (2a) and 

(2b). Consequently, point x
2
 qualifies as a saddle-point. If these conditions were not 

satisfied and x
2
 was still the peak of the path, then another cycle of refinement of x

2
 

would be required; this does happen in cycle 4 (see below). In the third cycle (Fig. 1C), 

another energy peak is found between x
2
 and p. Maximization along s

0
 = (p - x

2
) to y3

1, 

followed by line-minimization along s
1
, yields the third intermediate path-point x

3
. The 

RMS-gradient at x
3
 is small, indicating that it is close to a stationary point. In the fourth 

refinement cycle (Fig. 1D), the peak in energy along the four segments of the path is 

found to be x
3
 itself. To refine such a point, s

0
 is taken as the direction t3 which bisects 

the two segments that meet at x
3
, 
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t3 ≡ 
x+ - x3

|x+ - x3|
 - 

x- - x3

|x- - x3|
   , 

where x- and x+ are the path-points on each side of x
3
, here x

2
 and p, respectively. This 

vector ti can be interpreted as the direction "tangent" to the path at xi . After maximizing 

locally in the neighborhood x
3
 along s

0
 = t3, a conjugate minimization yields x'

3, which 

replaces x
3
 as the intermediate path-point between x

2
 and p and also qualifies as a 

saddle-point. At this stage, the only local maxima along the path [r, x
1
, x

2
, x'

3, p] are 

saddle-points, so that the refinement is complete. 

Steepest descent minimization on each side of the saddle-point x
2
 connects r to 

the stable intermediate i. Steepest descent on each side of the other saddle-point x'
3 

connects i to p. This gives the full adiabatic path from r to p. 

Because the dimensionality in this example is D = 2, s
D-1

 is the one and only 

direction conjugate to s
0
, so that the number of successive line-minimizations in a given 

cycle is always D-1. In molecular systems with several hundred degrees of freedom, the 

number of successive line-minimizations cannot always be allowed to reach D-1. Due to 

the non-quadratic nature of molecular potential functions, minimization along all D-1 

recursively built sj could result in the point yj falling into a nearby minimum. To prevent 

this, line-minimizations are interrupted as soon as the projection τj onto s
0
 of the gradient 

gj at yj exceeds a certain tolerance µ, defined by 

τj  ≡  D1/2 
gjgTs

0

|gj|.|s0
|
  >  µ      (j > 1). 

Sinclair and Fletcher [7] use the same criterion in their saddle-search, except that they do 

not correct for dimensionality. This becomes necessary when dealing with very large 

systems. Point yj then becomes a new path intermediate in the usual way. Even though 

not all D-1 line-minimizations are performed, the resulting point yj is closer to the 

adiabatic valley than the path-point y1 it replaces, leading to an improved path. 
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In cycles where the energy peak along the path is one of the path intermediates x
i
 

(as in cycle 4 of Fig. 1), it can sometimes happen that no local energy maximum around 

x
i
 can be found along the "tangent" t

i
 . Since a direction s

0
 is not determined in such a 

case, the point x
i
 is removed from the series of intermediates and the path is rebuilt 

between the two points that surrounded xi . This behavior is more likely to happen in a 

system with  D » 2, where path intermediates resulting from less than D-1 conjugate line-

minimizations in early refinement cycles can be neighbors to more recent points which 

are closer to the bottom of the adiabatic valley. 

 

3. Applications 

The CPR algorithm has been integrated into the program CHARMM [16], which 

provides the empirical energy function, and applied to conformational transitions in a 

range of molecules, involving up to several thousand degrees of freedom (to be 

published). Here, we consider the transition between the two pucker states of the five 

membered ring of a proline residue. We first examine the transition in an unhindered 

pyrrolidine ring and then compare this result with the behavior of one of the prolines in 

the cyclic decapeptide antamanide, whose dynamics have been studied recently [17]. 

3.1  N-acetyl-pyrrolidine (NAP) 

NAP is an analogue of a peptidyl-proline fragment. Its structure is given in 

Figure 2. Using a polar hydrogen model (PARAM19), in which non-polar hydrogens are 

combined with their bonded carbons into a single extended center [16], NAP has 8 atoms 

and 24 degrees of freedom in the full Cartesian coordinate space. In this model, the 

minimum energy conformers of NAP have their heavy atoms lying in one plane, except 

for carbons β and γ. This ring pucker allows for two conformers, related through a plane 

of symmetry, which differ only in whether carbon β is above the plane and carbon γ is 

below or vice-versa. These two conformers correspond to the reactant and the product of 

the reaction considered here. Although there are a variety of ways of describing the ring 

pucker (e.g. pseudorotation coordinates [18]), we use two of its dihedral angles, χ
1 

and χ
3
 

(Fig. 2), because these readily accessible internal coordinates provide a good separation 
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of the ring's stationary points and highlight its symmetry. The values of [χ
1
, χ

3
] 

corresponding to the two minima are [-37.6, -37.5] and [37.6, 37.5]. As can be seen in 

Figure 3 and is expected from Figure 2, the potential energy surface is nearly centro-

symmetric. 

Figure 3 details the refinement of the reaction path. While the adiabatic energy 

map in terms of internal coordinates χ
1
 and χ

3
 looks deceptively simple, the actual 

refinement progresses on an energy surface defined in Cartesian coordinate space, which 

spans 24 dimensions. The adiabatic path is also more curved in that space. For this reason 

the path refinement is not dictated by the features of the adiabatic [χ
1
, χ

3
] map as it was 

on the Müller-Brown potential, which was the actual surface on which the CPR 

progressed. To clarify how the algorithm perceives the topology of the surface in 

Cartesian coordinates, we plot the energy profile along the path segments for each 

refinement cycle (Figure 4). 

Starting from a linear interpolation between reactant r and product p, an 

intermediate point a is added after 23 conjugate line-minimizations in the first cycle 

(D-1 = 23  is the maximum number of line-minimizations per cycle) and further refined 

to a' with 23 more line-minimizations in cycle 2 (Fig. 3A). Intermediates b and c are 

added on each side of a' in cycles 3 and 4, which take only 3 line-minimizations, because   

τ4 > µ   in both cycles (Fig. 3B). In cycle 5, a local energy maximum cannot be found on 

the tangent to the path at a', which at this stage is the peak along the path. Point a' is 

therefore removed, resulting in a single path segment connecting point c to b (Fig. 3C). 

Finally, point d is added after 23 line-minimizations in cycle 6, with a RMS-gradient of 

only 0.4 kcal/molÅ, indicating that d is quite close to the saddle-point (Fig. 3C). More 

cycles refine point d further (not shown), reducing its RMS-gradient by an order of 

magnitude at every iteration. After 5 more cycles of 23 line-minimizations, the 

RMS-gradient is less than 8.10-7 kcal/molÅ. This vanishing gradient and a normal-mode 

analysis at point d revealing only one imaginary frequency (ν = 164 cm-1) confirms that d 

is a saddle-point. The activation barrier along the refined path is 3.26 kcal/mol, as 

compared with 11.9 kcal/mol along the initial line-interpolation between r and p. The 
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whole refinement took less than 2 CPU seconds (all CPU times herein are given for one 

processor on a Convex 220). 

In the transition state, [χ
1
, χ

3
]s = [-21.7, 22.0]. Because of the asymmetry of the 

CH3CO group, χ
1
 does not exactly equal -χ

3
. The ring structure is that of an open 

envelope, with all 4 carbon atoms in one plane and the nitrogen out of that plane (the 

C
α
—N—C

δ
 plane being the "flap" of the envelope ). As can be seen from the adiabatic 

map in Figure 3, there are two such transition states in the pyrrolidine ring, which are 

related by a plane of symmetry and have with their "flap" on either side of that plane. 

Each connects r to p via a different, although symmetrical reaction path. When the ring is 

placed in an anisotropic environment, or the torsion about the dihedral angle φ is 

restricted by an outgoing polypeptide chain, this symmetry is broken. An example of this 

is shown in the following section. 

3.2  Proline 2 in antamanide 

The antamanide molecule, whose X-ray structure [19] has been determined and 

solution structure has been analyzed by NMR [17], is a cyclic decapeptide of sequence   

-Val1-Pro2-Pro3-Ala4-Phe5-Phe6-Pro7-Pro8-Phe9-Phe10-  , which consists of 90 atoms 

in the polar hydrogen model. All 270 degrees of freedom were allowed to contribute to 

the reaction coordinate. We chose to explore the puckering behavior of proline 2. The 

energy minima correspond to [χ1, χ3] values in proline 2 of [-34.4,-38] for the reactant 

and [25.8, 42.8] for the product state, the latter being 1 kcal/mol higher with the 

CHARMM potential energy. This difference in geometry and energy between the two 

puckering states is evidence that the symmetry of the energy surface describing the ring 

is broken in proline 2, as compared with NAP (section 3.1). 

To determine the extent of this loss in symmetry, we performed two path 

refinements to find the transition states of the puckering reaction. Each refinement was 

started with an intermediate close to one of the two saddle-points in NAP. The 

antamanide intermediate of refinement A was prepared by constraining the [χ1, χ3] 

dihedral angles of proline 2 at [-22, 22] and letting the rest of the molecule relax. For the 

intermediate of refinement B, these dihedral angles were preset to [22, _22]. The two 

resulting paths (shown in Fig. 5) cross the same saddle-point, which is located at 
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[χ1, χ3]S
 = [-17.7, 11.2]. The activation barrier is 3.84 kcal/mol relative to the reactant 

and there is a unique imaginary saddle-frequency of 208.8 cm-1. Partial path refinement 

required only 37 (for A) and 122 (for B) line-minimizations (taking 5.5 and 19.5 CPU 

seconds), achieving an energy barrier within 0.06 kcal/mol of its final value and a 

RMS-gradient at the saddle-point of less than 5.10-2 kcal/molÅ.  After a total of 8 and 28 

cycles, involving a total of 602 and 729 conjugate line-minimizations (taking 62 and 78 

CPU seconds) for A and B respectively, the RMS-gradient at the saddle was finally less 

than 1.6.10-6 kcal/molÅ. 

Because the CPR method gives the exact saddle-points, it was possible to 

conclude that the two refined paths are identical by simply comparing the energies at the 

saddle-points (the difference in final energy between saddle A and saddle B is less than 

10-9 kcal/mol). The fact that only one possible reaction path exists, indicates that the 

force-field of the proline 2 ring in the [χ1, χ3] = [22, _22] region is significantly perturbed 

from that present in NAP. This was verified by calculating the adiabatic energy map, 

which is overlaid on the reaction paths in Figure 5. The effect of the polypeptide 

environment is to destabilize one of the intrinsic saddle-points of the isolated ring, so as 

to make it disappear. Again, the adiabatic path can be obtained at any desired resolution 

by steepest descent minimization on each side of the saddle-point. 

 

11 



4. Discussion 

The Conjugate Peak Refinement (CPR) is a global method, in the sense that it 

handles the whole path explicitly. However, it does not treat all the points along the path 

equally at all times, relaxing them simultaneously into the adiabatic valley, as do other 

global methods [10, 11]. Instead, the approach of the CPR algorithm is to recognize and 

eliminate non-optimal parts of a reaction path. This is done by searching for energy "hot-

spots" along the path and bringing these path regions down into a nearby valley linking 

the saddle-points. By alternating controlled conjugate minimization with path rebuilding, 

the method simultaneously achieves relaxation of the path into the valleys and 

convergence of the path maxima to the connecting saddle-points of the energy surface. 

Obtaining the saddle-points is an essential step in characterizing and evaluating a 

reaction path. It directly provides the energy barrier and the adiabatic path (by steepest 

descent). Moreover, it makes it possible to perform a normal-mode analysis, in which the 

eigenvector associated with the unique negative eigenvalue represents the reactive mode 

at the transition state. Examination of this mode helps to determine the extent of coupling 

among the parts of the reactive system and to isolate the degrees of freedom that 

contribute the most to a complex reaction coordinate. The resulting reaction coordinate 

can then be used in free energy simulations to calculate the activation barrier [20] and in 

activated dynamics simulations to compute the transmission coefficient [21]. Having 

isolated the true saddle-point also guarantees that the path is fully refined and is not 

crossing a degenerate (multiple negative eigenvalues) saddle region, as has been 

observed in one global method [10a]. 

Other positive aspects are that the CPR method does not impose any a priori 

restrictions on path length and shape, that computational resources are concentrated on 

improving the reactive path in its more relevant high-energy segments and that the 

transition state highest in energy (i.e. rate limiting) is isolated first, before the refinement 

proceeds with improving path segments in regions of lower energy. This last feature can 

be particularly useful when searching for a globally optimal path by performing multiple 

path refinements with different initial guesses. In such a case, each refinement would 

only be carried out until the rate-limiting saddle-point is found, without further refining 

the lower segments of the trial path. 
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The method could be optimized to take advantage of the form of a particular 

energy function by the proper choice of coordinate representation. Since energy and 

gradient evaluations are frequent during the phase of conjugate minimization, a 

coordinate system in which the potential function and its derivative are easily obtained 

would be most suitable. For example, Cartesian coordinates are a good choice if the 

potential has pair-wise interaction terms. On the other hand, the interpolations along 

path-segments are best done in a coordinate system that naturally follows the adiabatic 

valleys of the potential, since this will greatly reduce the number of intermediate path-

points to be refined. Internal coordinates, for instance, would be appropriate if the 

potential has valence terms. An example of this can be seen in cycle 2 of Fig. 4, where 

interpolation in Cartesian space leads to spurious energy barriers on each side of point a', 

largely due to covalent deformation. These barriers must then be removed by adding two 

extra intermediates, b and c, in subsequent cycles. Because force-fields for 

macromolecules contain both pair-wise (non-bonded) and valence (bonded) terms, an 

implementation of the algorithm in a hybrid coordinate representation is planned, with 

Cartesian coordinates used during conjugate minimizations and internal coordinates used 

to define the interpolating path-segments that are searched for peaks in the energy. 
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Figure 1. Path refinement progress on a Müller-Brown potential [8]. Panels A through D 

correspond to cycle 1 through 4 of the CPR iterations (see Method's section). The 

reactant, product and intermediate wells are indicated with r, p and i. Panel D is an 

enlargement of the saddle-region between i and p. The current path segments at the 

beginning of a given cycle are in solid lines. The newly build segments are in dashed 

lines. The conjugate directions s1 are in dotted line. Saddle-points are marked with a 

circle. 
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Figure 2. N-acetyl-pyrrolidine.
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Figure 3. The path at successive stages of refinement, for the ring-puckering 

reaction in NAP. Adiabatic energy map (contour lines plotted every 0.5 kcal/mol) as a 

function of the dihedral angles χ1 and χ3 (in degrees). The saddle-points are indicated by 

a circle.  A: Initial guess (____), cycle 1 (----), cycle 2 (……).  B: Cycle 3 (____),  

cycle 4 (----).  C: Cycle 5 (____), cycle 6 (----). 
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Figure 4. The energy along the NAP ring-puckering path. Panel and cycle numbering is 

the same as in Fig. 3. The energy is evaluated along the line-segments that interpolate in 

Cartesian coordinate space between the path-points (which are marked with an asterisk). 

The horizontal axis is the distance along that curvilinear path, normalized by the total 

length L of the path, L = ∑
i=2

n
|xi - xi-1| .  A: Initial guess (____), cycle 1 (----), cycle 2 (……).  

B: Cycle 3 (____), cycle 4 (----).  C: Cycle 5 (____), cycle 6 (----). 
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Figure 5. Panels A and B show the input (dotted lines) and refined (solid lines) paths of 

two independent path refinements in antamanid, as a function of the dihedral angles χ1 

and χ3 in proline 2.  Path-points are marked with an � and the saddle-point is indicated 

by a circle. The contour lines in the adiabatic energy map are plotted every 0.5 kcal/mol. 
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