11. Domination in Graphs

- Some definitions
- Minimal dominating sets
- Bounds for the domination number
- The independent domination number
- Other domination parameters.
“Dominating queens” on the chessboard.

The queen’s graph of the d3 square.

11.2. Minimal Dominating Set.

A minimal dominating set in a graph G is a dominating set that contains no dominating set as a proper subset.

A minimal dominating set of minimum cardinality is a minimum dominating set and consists of $\gamma(G)$ vertices. (See the picture.)

Theorem 11.1: A dominating set S of a graph G is a minimal dominating set of G if and only if every vertex v in S satisfies at least one of the following two properties:

- there exists a vertex w in $V(G) - S$ such that $I(w) \cap S = \{v\}$
- v is adjacent to no vertex of S.

Proof.

A: Suppose that S is a minimal dominating set of G. Then for each $v \in S$, the set $S - \{v\}$ is not a dominating set of G. Consequently, S is a minimal dominating set of G.

B: Assume that S is a minimal dominating set of G. Then for each $v \in S$, there is a vertex w in $V(G) - (S - \{v\})$ that is adjacent to no vertex of $S - \{v\}$. If $w = v$ then v is adjacent to no vertex of S. Therefore, S is a minimal dominating set of G.

“Attacking queens.”

“Nonattacking queens.”
Theorem 11.2: If \(S \) is a minimal dominating set of a graph \(G \) without isolated vertices, then \(V(G) - S \) is a dominating set of \(G \).

Proof.
Let \(v \notin S \). Then \(v \) has at least one of the two properties of the Theorem 11.1.

1. Suppose first that there exists a vertex \(w \) in \(V(G) - S \) such that \(f(w) \cap S = \{ v \} \).
 Hence \(v \) is adjacent to some vertex in \(V(G) - S \).
2. Suppose next that \(v \) is adjacent to no vertex in \(S \).
 Then \(v \) is an isolated vertex of the subgraph \(\langle S \rangle \).
 Since \(v \) is not isolated in \(G \), the vertex \(v \) is adjacent to some vertex of \(V(G) - S \).

Thus \(V(G) - S \) is a dominating set of \(G \).

11.3. Bounds on the Domination Number.

Using the above theorem we have an upper bound for \(\gamma(G) \) in terms of the order of \(G \).

Corollary 11.3: If \(G \) is a graph of order \(n \) without isolated vertices, then \(\gamma(G) \leq n/2 \).

Proof.
Let \(S \) be a minimal dominating set of \(G \). By Theorem 11.2, \(V(G) - S \) is a dominating set of \(G \). Thus
\[
\gamma(G) \leq \min\{ |S|, |V(G) - S| \} \leq n/2.
\]
Theorem 11.6.: If G is a graph of order n, then
\[
\left\lceil \frac{n}{1 + \Delta(G)} \right\rceil \leq \gamma(G) \leq n - \Delta(G).
\]

Proof.

We prove first the lower bound.

Let S be a minimum dominating set of G. Then

\[V(G) - S \subseteq \bigcup_{v \in S} \Gamma(v), \]

implying that $|V(G) - S| \leq |S| \cdot \Delta(G)$.

Therefore, $n - \gamma(G) \leq \gamma(G) \cdot \Delta(G)$, and so

\[\left\lceil \frac{n}{1 + \Delta(G)} \right\rceil \leq \gamma(G). \]

Theorem 11.8.: If G is a graph without isolated vertices, then

\[\gamma(G) \leq \min\{\alpha(G), \alpha(G), \beta(G), \beta(G)\}. \]

Proof.

Since every vertex cover of a graph without isolated vertices is a dominating set, as is every maximal independent set of vertices, so

\[\gamma(G) \leq \alpha(G) \text{ and } \gamma(G) \leq \beta(G). \]

Let X be an edge cover of cardinality $\alpha(G)$. Then every vertex of G is incident with at least one edge in X.

Let S be a set of vertices, obtained by selecting an incident vertex with each edge in X.

Then S is a dominating set of vertices and $\gamma(G) \leq |S| \leq |X| = \alpha(G)$.

Without proving we give some further upper bounds:

- If $\delta(G) \geq 1$, then $\gamma(G) \leq n/2$.
- If $\delta(G) \geq 2$ and G is not one of seven exceptional graphs then $\gamma(G) \leq 2n/5$.
- If $\delta(G) \geq 3$ then $\gamma(G) \leq 3n/8$.

Theorem 11.4. Let G be a graph of order n with $\delta(G) \geq 2$. Then

\[\gamma(G) \leq \frac{n}{1 + \ln(\delta + 1)} \]

implies that $V(G) - S \subseteq \bigcup_{v \in S} \Gamma(v)$.

Therefore, $n - \gamma(G) \leq \gamma(G) \cdot \Delta(G)$, and so

\[\left\lceil \frac{n}{1 + \Delta(G)} \right\rceil \leq \gamma(G). \]

Corollary 11.7. If G is a graph of order n, then $\gamma(G) \leq n - \kappa(G)$, where $\kappa(G)$ is the vertex connectivity.

Proof.

The statement follows immediately from the inequality $\kappa(G) \leq \Delta(G)$.

Now, we establish the upper bound:

Let v be a vertex of G with $\deg v = \Delta(G)$.

Then $V(G) - \Gamma(v)$ is a dominating set of cardinality $n - \Delta(G)$.

So, $\gamma(G) \leq n - \Delta(G)$.

\[\text{13} \]

Graph-Theory 9
Let M be a maximum matching in G. We construct a set S of vertices consisting of one vertex incident with an edge of M for each edge of M.

Let $uv \in M$.

Then, u and v cannot be adjacent to distinct M-unsaturated vertices x and y, respectively; otherwise x, u, v, y is an M-augmenting path in G, contradicting Theorem 8.2.

If u is adjacent to an M-unsaturated vertex, place u in S; otherwise place v in S.

This is done for each edge in M.

Thus, S is a dominating set of G, and $\gamma(G) \leq |S| \leq |M| = \beta_i(G)$.

11.4. The Independent Domination Number

A set S of vertices or edges in a graph G is said to be maximal with respect to a property P if S has property P but no proper superset of S has property P.

A set S of vertices or edges in a graph G is said to be minimal with respect to a property P if S has property P but no proper subset of S has property P.

Example: $K_{s,t}$, where $s < t$, there are two maximal independent sets of vertices: the partite sets of $K_{s,t}$.

A maximal independent set of vertices of maximum cardinality in a graph G is called a maximum independent set of vertices.
Theorem 11.10.: Every maximal independent set of vertices in a graph is a minimal dominating set.

Proof.

Let S be a maximal independent set of vertices in a graph G. By Theorem 11.9, S is a dominating set. Since S is independent, certainly every vertex of S is adjacent to no vertex of S. Thus, every vertex of S satisfies the second property of Theorem 11.1. So, by Theorem 11.1, S is a minimal dominating set.

Can equality hold? Is there any graph G with $\gamma(G) = i(G)$?

Examples:

* For $K_{1,t}$, $\gamma(K_{1,t}) = i(K_{1,t}) = 1$, for every positive integer t.
* For $1 \leq s \leq t$, let H be the graph obtained from $K_{s,t}$ by adding a pendant edge to each vertex of the partite set of cardinality s. Then $\gamma(H) = i(H) = s$.
* For the queen's graph G, we have $\gamma(G) = i(G) = 5$.

May the difference between the independent domination number and domination number of a graph be arbitrary large?

The double star T containing two vertices of degree $k \geq 2$, where $i(T) = k$ and $\gamma(T) = 2$.

For some special classes of graphs, Bollobás and Cockayne determined an upper bound for $i(G)$ in terms of $\gamma(G)$.

Theorem 11.11.: If G is a $K_{1,t}$-free graph, where $k \geq 2$, then $i(G) \leq (k - 1)\gamma(G) - (k - 2)$.

Proof.

Let S be a minimum domination set of vertices of G and let S' be a maximal independent set of vertices of S in G. Thus, $|S| = \gamma(G)$ and $|S'| \geq 1$.

Now, let T denote the set of all vertices in $V(G) - S$ that are adjacent in G to no vertex of S', and let T' be a maximal independent set of vertices in T.

Then, $S' \cup T'$ is an independent set of vertices of G.

$\text{(G)} = i(\text{G})$?

$\text{Theorem 11.9. (Berge, 1973): A set } S \text{ of vertices in a graph is an independent dominating set if and only if } S \text{ is maximal independent.}$

Proof.

We have seen already that every maximal independent set of vertices is a dominating set.

Conversely, suppose that S is an independent dominating set. Then S is independent and every vertex not in S is adjacent to a vertex of S, so S is maximal independent.

The double star T containing two vertices of degree $k \geq 2$, where $i(T) = k$ and $\gamma(T) = 2$.

$\text{Theorem 11.11.: If } G \text{ is a } K_{1,t} \text{-free graph, where } k \geq 2, \text{ then } i(G) \leq (k - 1)\gamma(G) - (k - 2).$

Proof.

Let S be a minimum domination set of vertices of G and let S' be a maximal independent set of vertices of S in G. Thus, $|S| = \gamma(G)$ and $|S'| \geq 1$.

Now, let T denote the set of all vertices in $V(G) - S$ that are adjacent in G to no vertex of S', and let T' be a maximal independent set of vertices in T.

Then, $S' \cup T'$ is an independent set of vertices of G.

$\text{(G)} = i(\text{G})$?

$\text{Theorem 11.9. (Berge, 1973): A set } S \text{ of vertices in a graph is an independent dominating set if and only if } S \text{ is maximal independent.}$

Proof.

We have seen already that every maximal independent set of vertices is a dominating set.

Conversely, suppose that S is an independent dominating set. Then S is independent and every vertex not in S is adjacent to a vertex of S, so S is maximal independent.
Since every vertex of $V(G) - S'$ is adjacent to some vertex of S', and every vertex of $T - T'$ is adjacent to some vertex of T', it follows that $S' \cup T'$ is a maximal independent set of vertices.

Thus, by Theorem 11.9, $S' \cup T'$ is an independent dominating set.

Observe that every vertex of $S - S'$ is adjacent to at most $k - 1$ vertices of T'. (If this were not the case, then some vertex v of $S - S'$ is adjacent to at least k vertices of T', and also at least one vertex of S', which contradicts the hypothesis that G contains no induced subgraph isomorphic to $K_{i,k+1}$.)

Also, observe that every vertex of T' is adjacent to some vertex of $S - S'$.

Therefore

$$|T| \leq (k-1)|S - S'| = (k-1)(|S| - |S'|) = (k-1)(\gamma(G) - |S'|).$$

Consequently,

$$i(G) \leq |S' \cup T'| = |S'| + |T'| \leq |S'| + (k-1)(\gamma(G) - |S'|) = (k-1)(\gamma(G) - (k-2)|S'|) \leq (k-1)(\gamma(G) - (k-2)).$$

11.5. Other Domination Parameters

For a set A of vertices in a graph G, the closed neighborhood $N[A]$ of A is defined $N[A] = \cup_{v \in A} N[v]$. (Trivially, $N[A] = I(A) \cup A$.)

A set of vertices in G is called an irredundant set if for every vertex $v \in S$, there exists a vertex $w \in N[v]$ such that $w \notin N[S - \{v\}]$.

Equivalently, S is an irredundant set of vertices if $N[S - \{v\}] \neq N[S]$ for every vertex $v \in S$.

Every vertex v with the property $N[S - \{v\}] \neq N[S]$ is an irredundant vertex.

Consequently, every vertex in an irredundant set is an irredundant vertex.

$S = \{w, y, s\}$ is an irredundant set of vertices.
A set of vertices in a graph G is redundant if there exists a vertex $v \in S$ for which $N[S \setminus \{v\}] \neq N[S]$. Such a vertex v is called a redundant vertex (with respect to S).

Theorem 11.12. A set S of vertices in a graph G is redundant if every vertex v in S satisfies at least one of the following two properties:

- there exists a vertex w in $V(G) \setminus S$ such that $\Gamma(w) \cap S = \{v\}$
- v is adjacent to no vertex of S.

Proof.

First, let S be a set of vertices of G such that for every vertex $v \in S$, at least one of the above properties is satisfied.

If the first holds, then there exists a vertex $w \in N[v]$ such that $w \in N[S \setminus \{v\}]$. If the second holds then $v \notin N[S \setminus \{v\}]$.

In either case, S is redundant.

The vertex v may be a private neighbour of itself. Consequently, a nonempty set S of vertices in a graph G is redundant if every vertex of S has a private neighbour.

Certainly every nonempty subset of an irredundant set of vertices in a graph G is irredundant.

Also, every independent set of vertices is an irredundant set.

The irredundant number $ir(G)$ of a graph G is the minimum cardinality among the maximal irredundant sets of vertices of G.

Consider the previous picture.

Since $S = \{r, z\}$ is a maximal irredundant set of vertices of minimum cardinality for the graph G, it follows that for this graph, $ir(G) = 2$.

Is it true?

Conversely, let S be an irredundant set of vertices in G, and let $v \in S$. Since S is irredundant, there exists $w \in N[v]$ such that $w \notin N[S \setminus \{v\}]$.

If $w \neq v$ then the first property is satisfied, if $w = v$ then the second one.

By Theorem 11.1, a minimal dominating set of vertices in a graph is an irredundant set.

Hence, every graph has an irredundant dominating set of vertices.

If S is an irredundant set of vertices in a graph G, then for each $v \in S$, the set $N[v] \setminus N[S \setminus \{v\}]$ is nonempty.

Each vertex in $N[v] \setminus N[S \setminus \{v\}]$ is referred to as a private neighbour of v.

To see that S is irredundant observe that y is a private neighbour of r, and w is a private neighbour of z.

To see that S is a maximal irredundant set, note that

- $\{x\}$ is not irredundant since x would have no private neighbour.
- $\{x, r, z\}$ and $\{y, r, z\}$ are not irredundant since r would have no private neighbour.
- $\{x, r, z\}$, $\{v, r, z\}$ and $\{w, r, z\}$ are not irredundant since z would have no private neighbour.

Hence a maximal irredundant set need not be a dominating set and, the irredundance number is not a domination parameter.
Theorem 11.13.: For every graph G,
\[\text{ir}(G) \leq \gamma(G) \leq i(G). \]

Proof.
We have already observed that $\gamma(G) \leq i(G)$. The inequality $\text{ir}(G) \leq \gamma(G)$ is a consequence of the fact that every minimal dominating set of vertices of G is an irredundant set.

The picture shows that the inequality $\text{ir}(G) \leq \gamma(G)$ may be strict since $\gamma(G) = 3$ and $\text{ir}(G) = 2$.

Example.

\[\gamma(G) = 3 \text{ and } \text{ir}(G) = 2. \]

The set \{u, v\} is a maximal irredundant set of minimum cardinality in G.

To see that \{u, v\} is a maximal irredundant set in G, we observe that

* r has no private neighbour in \{t, u, v\},
* u_1 has no private neighbour in \{u, v, u_2\} and \{u, v, v_1\},
* v_1 has no private neighbour in \{u, v, v_2\} and \{u, v, v_1\},

Cockayne, Favaron, Payan and Thomason (1981) have shown that graphs exist having distinct values for all six parameters mentioned in the previous theorem.

Where can be equality?

\[\text{Theorem 11.15.: For every bipartite graph } \beta(G) = \gamma(G) = \text{IR}(G). \]

Proof.
Let G be a bipartite graph with partite sets U and W. Let S be a maximum irredundant set of vertices in G, and let T be the set of isolated vertices of (S). Furthermore, let

\[U_1 = T \cap U, \quad U_2 = (S \cap U) - T, \]
\[W_1 = (T \cap W), \quad W_2 = (S \cap W) - T, \]
One or more of these sets may be empty.

Each vertex \(w \in W_2 \) is irredundant in \(S \).

Since \(w \) is not isolated in \(\langle S \rangle \), the vertex \(w \) is not its own private neighbour.

However, since \(S \) is an irredundant set, \(w \) is private neighbour of some vertex of \(V(G) - S \).

Hence for \(w \in W_2 \), there exists a vertex \(w' \in V(G) - S \) such that \(I[w] \cap S = \{w\} \).

Moreover, since \(w \in W \), it follows that \(w' \in U \).

Let \(A = \{w' \mid w \in W_2\} \). Then \(|A| \geq |W_2| \) and \(A \subseteq U \). Furthermore, no vertex of \(A \) is adjacent to a vertex of \(W_2 \).

Consequently, \(U_1 \cup U_2 \cup W_1 \cup A \) is independent in \(G \). Hence

\[
\beta(G) \geq |U_1| + |U_2| + |W_1| + |A| \geq |S| = IR(G).
\]

The result follows from Theorem 11.14.